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5. HYPOTHESIS TESTING  

 5.1. Introduction 

101. This chapter provides an overview of both hypothesis testing and methodological issues specific to 
determining NOECs under various experimental scenarios. It is divided into three major parts. The first 
part includes flow charts summarising possible schemes for analysing quantal (Fig. 5.1) and continuous 
data (Fig. 5.2 and 5.3), along with some basic concepts that are important to the understanding of 
hypothesis testing and its use in the determination of NOECs. Special attention is given to the choice of the 
hypothesis to be tested, as this choice may vary depending on whether or not a simple dose-response trend 
is expected, and on whether increases, or decreases (or both) in response are of concern. The remainder of 
the chapter is divided into two major sections that discuss statistical issues related to the determination of 
NOECs for quantal and continuous data (Sections 5.2 and 5.3 respectively) and provide further details on 
the methods listed in Figures 5.1 and 5.2.). This division reflects the fact that different statistical methods 
are required for each type of data, and that problems arise that are unique to the analysis of each type of 
data. An attempt has been made to mention the most widely used statistical methods, but to focus on a set 
of methods that combine desirable statistical properties with reasonable simplicity. For a given set of 
circumstances, more than one statistical approach may be acceptable, and in such cases the methods are 
described, the limitations and advantages of each are given, and the choice is left to the reader. The flow 
charts in Figures 5.1 and 5.2 indicate a possible choice of methods.  Examples of the application of many 
of these methods, mathematical details and properties of the methods are presented in Annex 5.1. 

102. The most commonly used methods for determining the NOEC are not necessarily the best. 
Relatively modest changes in current procedures for determining NOECs (e.g., selection of more powerful 
or biologically more plausible statistical methods) can improve the scientific basis for conclusions, and 
result in conclusions that are more protective of both the environment and business interests. Thus, some of 
the methods recommended may be unfamiliar to some readers, but all of the recommended methods should 
be compatible with current ISO and OECD guidelines that require the determination of NOECs.  

103. A basic principle in selecting statistical methods is to attempt to use underlying statistical models 
that are consistent with the actual experimental design and underlying biology. This principle has 
historically been tempered by widely adopted conventions. For example, it is traditional in 
ecotoxicological studies to analyse the same response measured at different time points separately by time 
point, although in many cases unified analysis methods may be available. It is not the purpose of this 
section to explore this issue. Instead, discussion will be restricted to the most appropriate analysis of a 
response at a single time point and, usually, for a single sex. 

104. NOECs, as defined and discussed in this document, are based on a concept sometimes called 
“proof of hazard”. In essence, the test substance is presumed non-toxic unless the data presents sufficient 
evidence to conclude toxicity. Alternative approaches to assessing toxicity through hypothesis testing exist.  
For example Tamhane et al (2001) and Hothorn and Hauschke (2000) develop an approach based on proof 
of non-hazard.  Specifically, if an acceptable threshold of effect is specified, such as a 20% decrease in 
mean, then the maximum safe dose (MAXSD in Tamhane et al (2001)) is the highest concentration for 
which there is significant evidence that the mean effect is less than 20%. These are relatively new 
approaches that have not been thoroughly tested in a practical setting and for few endpoints is there 
agreement on what level of effect is biologically important to detect. All current guidelines regarding 
NOEC are based on the proof of hazard concept. For these reasons, this alternative approach will not be 
presented in this chapter, though they do hold some promise for the future. The only common exception to 
this is in regard to limit tests, where in addition to determining whether there is a statistically significant 
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effect in the single test concentration, one also tests for whether the effect in the test concentration is less 
than 50%. A simple t-test can be used for that purpose.   

105. It should also be realized that statistics and statistical significance cannot be solely viewed as 
representative of biological significance. There can be no argument that statistical significance (or lack 
thereof) depends on many factors in addition to the magnitude of effect at a given concentration. Statistics 
is a tool that is used to aid in the determination of what is biologically significant. If an observed effect is 
not statistically significant, the basis for deciding it is nonetheless biologically significant is, obviously, not 
statistical. Lack of statistical significance may be because of a low power test.  On the other hand, a 
judgment of biological significance without sufficient data to back it up is questionable. 

106. The flow-charts and methodology presented indicate preliminary assessment of data to help guide 
the analysis. For example, assessments of normality, variance homogeneity, and dose-response 
monotonicity are advocated routinely. Such preliminary assessments do affect the power characteristics of 
the subsequent tests. The alternative to making these assessments is to ignore the characteristics of the data 
to be analyzed. Such an approach can be motivated on the perceived general characteristics of each 
endpoint. However, this does not avoid the penalty of sometimes using a low power or inappropriate 
method when the data do not conform to expectation. A bias of this chapter is to examine the data to be 
analyzed and use this examination to guide the selection of formal test to be applied. The preliminary 
assessment can be through formal tests or informed by expert judgment or some combination of the two.  
Certainly expert judgment should be employed whenever feasible, and when used, is invaluable to sound 
statistical analysis. These charts provide guidance, but sound statistical judgment will sometimes lead to 
departures from the flowcharts.  

107. The flow charts (Figures 5.1 and 5.2) are intended to include experiments which contain only two 
concentrations (control and one test concentration). Such experiments are generally referred to as limit 
tests and the methods described are applicable to these tests. 

108. It should be noted that tests of hypotheses might also be required for various special-case 
assessments of study results (e.g., use of a contingency table to assess the significance of male-female 
differences in frequency of responses at some dose). These types of analyses are beyond the scope of this 
document. 

109. The terms “dose” and “concentration” are used interchangeably in this chapter and the control is a 
zero dose or zero concentration group. Consistent with this, the terms “doses” and “concentrations” include 
the control, so that, for example, an experiment with only two concentrations has one control group and 
one positive concentration group.  

110. The tests discussed in this chapter, with the exception of the Tamhane-Dunnett and Dunn tests, are 
all available in commercial software. For example, they are available in SAS version 8 and higher. The 
two-sided Tamhane-Dunnett test (though not called such) is available in SAS through the studentized 
maximum modulus distribution provided by the probmc function. Where these tests are discussed, 
alternatives are provided, so that the reader can follow the general guidance of this chapter without being 
forced to develop special programs. 

111. It will be observed that there is no special flow chart for the exact Jonckheere-Terpstra and exact 
Wilcoxon tests. One of the appealing features of these two tests is that there are both asymptotic and exact 
versions and the same logic applies to both. 
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with Bonferroni-Holm 
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Non-standard design. 
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Use pairwise comparison 
(e.g. F isher’s Exact test 
with Bonferroni-Holm 
correction)

Both solvent contro l and non-solvent control are present.

Yes

Compare controls using Fishers 
Exact Test.  Do controls differ? 

No

Yes No

Drop Non-solvent contro l Combine controls, 
retain ing subgroups*

* Both scientific judgment and regulatory guidance must be considered in deciding w hether to pool non-solvent and solvent 
controls. The flow chart depicts appropriate actions if pooling is perm issible g iven these constraints.

 

Figure 5.1. Analysis of Quantal Data: Methods for determining the NOEC. Note that the dose count in ‘>2’ includes the control.
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should be used if possible.

A

 

Figure 5.2. Analysis of Continuous Data: Methods for determining the NOEC
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Use Tamhane-Dunnett test or perform pairwise 
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-Dunn’s Test with Bonferroni-Holm correction or
-Mann-Whitney with Bonferroni-Holm Correction or 
-Unequal variance t-test with Bonferroni-Holm
Correction )

Use non-parametric pairwise comparison (e.g. 
Dunn’s test or Mann-Whitney with Bonferroni-Holm 
correction)

Note: If there are <5 experimental units per treatment, or there are massive ties (see text)  then exact trend or pairwise tests
should be used if possible.
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A

Yes No

  

Figure 5.3. Analysis of Continuous Data: Methods for determining the NOEC. 

PBN1453



 ENV/JM/MONO(2006)18 

 39

5.1.1. The NOEC: What it is, and what it is not.  

112. The NOEC is defined as the test concentration below the lowest concentration that did result in a 
significant effect in the specific experiment, i.e. the NOEC is the tested concentration next below the 
LOEC.  

113. A significant effect is generally meant to be a statistically significant effect, as resulting from a 
hypothesis test. Obviously, no claim can be made that the condition of organisms exposed to toxicants at 
the NOEC is the same as the condition of organisms in the control group, or that the NOEC is an estimate 
of the threshold of toxicity (if such exists). Rather, no effect could be detected in this particular 
experiment. The detectability of an effect depends on the quality and the size of the experiment and the 
statistical procedure used. Of course, zero effects are never detectable. The relationship between the 
detectability of effects and the quality of the experiment can be quantified by the concept of statistical 
power. For a given null and alternative hypothesis, sample size and variance, statistical power is the 
probability that a particular magnitude of effect will result in a significant test outcome. In large 
experiments (i.e., many replicates) smaller sized effects are detectable as compared to small experiments. 
Thus, one may consider the detectable effect size of a particular experiment as an analogue of the detection 
limit of a particular chemical analysis. The detectable effect size can be increased not only by using larger 
sample sizes, but also by taking measures to make the experimental (residual) error smaller and by 
selecting more powerful statistical tests.  

114. Power calculations are useful for the purpose of designing experiments in such a way that effect 
sizes that are considered relevant are likely to be (statistically) detected. Care must be taken when using 
information on the power for interpreting a NOEC.  If the test was designed to detect a difference of x% 
and an observed treatment effect is not found statistically significant this does not allow one to conclude 
with a specified level of confidence that the true effect in the population is less than x%.  

115. Meaningful confidence intervals for the effect size at a given concentration are sometimes possible. 
An application of this is discussed in section 5.1.3 and methods for doing this are developed in Annex 5.3. 
For some techniques, obtaining meaningful confidence intervals is very difficult and this is discussed in 
greater detail in that annex. 

5.1.2. Hypothesis Used to determine NOEC  

116. The hypothesis that is tested in determining the NOEC for a toxicological experiment reflects the 
risk assessment question and the assumptions that are made concerning the underlying characteristics, or 
statistical model, of the responses being analysed (e.g., does the response increase in an orderly (i.e., 
monotone) way with increasing toxicant concentration?).  The statistical test that is used depends on the 
hypothesis tested (e.g., are responses in all groups equal?), the associated statistical model, and the 
distribution of the values (e.g., are data normally distributed?). Thus, it is necessary to understand the 
question to be answered and to translate this question into appropriate null and alternative hypotheses 
before selecting the test procedure.  

117. The need to select a statistical model for assessing the results of toxicity tests is not unique to the 
hypothesis testing approach. All methods of assessment assume a statistical model. The hypothesis testing 
approach to evaluation of toxicity data is based in part on keeping to a reasonable number the untestable or 
difficult-to-test assumptions, particularly those regarding the statistical model that will be used in reaching 
conclusions. The models used in regression and biologically based methods use stronger assumptions than 
the models used in the hypothesis testing approach.  
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118. The simplest statistical model generally used in hypothesis testing assumes only that the 
distributions of responses within these populations are identical except for a location parameter (e.g., the 
mean or median of the distribution of values from each group). Another statistical model that is often used 
assumes that there is a trend in the response that is associated with increasing exposure.  Each of these 
models suggests a set of hypotheses that can be tested to determine whether the model is consistent with 
the data. These two types of hypotheses can further be expressed as 1-sided or 2-sided. The discussion 
below is developed in terms of population means, but applies equally to hypotheses concerning population 
medians. The most basic hypothesis (in 1-sided form) can be stated as follows: 

H0 : µ0=µ1=µ2=…=µk vs. H1 : µ0>µi for at least one i, (model 1) 

where µi, i=0, 1, 2, 3, …, k denote the means of the control and test populations, respectively. 

119. Thus, one tests the null hypothesis of no differences among the population means against the 
alternative that at least one population mean is smaller than the control mean. There is no investigation of 
differences among the treatment means, only whether treatment means differ from the control mean. The 
one-sided hypothesis is appropriate when an effect in only one direction is a concern. The direction of the 
inequality in the above alternative hypothesis (i.e. in H1 : µ0>µi ) would be appropriate if a decrease in the 
endpoint was a concern but an increase was not (for instance, if an exposure was expected to induce 
infertility and reduce number of offspring).  If an increase in the endpoint was the only concern, then the 
direction of the inequality would be reversed.  

Two-sided Trend Test  

120. In the two-sided form of the hypothesis, the alternative hypothesis is : 

H1 : µ0≠µi for at least one i. 

Trend or Pairwise test 

121. If no assumption is made about the relationships among the treatment groups and control (e.g., no 
trend is assumed), the test statistics will be based on comparing each treatment to the control, independent 
of the other treatments. Many tests have been developed for this approach, some of which will be discussed 
below. Most such tests were developed for experiments in which treatments are qualitatively different, as, 
for example, in comparing various new therapies or drug formulations to a standard. 

122. In toxicology, the treatment groups generally differ only in the exposure concentration (or dose) of 
a single chemical. It is further often true that biology suggests that if the chemical is toxic, then as the level 
of exposure is increased, the magnitude effect will tend to increase. Depending on what response is 
measured, the effect of increasing exposure may show up as an increase or as a decrease in the measured 
response, but not both. The statistical model underlying this biological expectation is what will be called a 
trend model or a model assuming monotonicity of the population means: 

µ0 ≥ µ1 ≥ µ2 ≥ µ3 ≥. . . ≥ µk  (or with inequalities reversed)  (Model 2) 

The null and alternative hypotheses can then be stated as 

H02 : µ0=µ1=µ2=…=µk vs H12 : µ0 ≥ µ1 ≥ µ2 ≥ µ3 ≥. . . ≥ µk , with µ0 > µk . 
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Note that µ0 > µk is equivalent, under the alternative, to µ0 > µi for at least one i. If this monotone 
model is accepted as representing the true responses of test organisms to exposure to toxicants, it is not 
possible for, say, µ3 to be smaller than µ0 and µ6 not to be smaller.  

123. Under the trend model and tests designed for that model, if tests of hypotheses H02 vs. H12 reveal 
that µ3 is different from µ0, but µ2 is not, the NOEC has been determined (i.e. it is the test concentration 
associated with µ2), and there is no need to test whether µ1 differs from µ0. Also, finding that µ3 differs 
from µ0 implies that a significant trend exists across the span of doses including µ0 and µ3, the span 
including µ0 and µ4, and so on. For the majority of toxicological studies, a test of the trend hypothesis based 
on model (2) is consistent with the basic expectations for a model for dose-response. In addition, statistical 
tests for trend tend to be more powerful than alternative non-trend tests, and should be the preferred tests if 
they are applicable. Thus, a necessary early step in the analysis of results from a study is to consider each 
endpoint, decide whether a trend model is appropriate, and then choose the initial statistical test based on 
that decision. Only after it is concluded trend is not appropriate do specific pairwise comparisons make 
sense to illuminate sources of variability. 

124. Toxicologists sometimes do not know whether a compound will cause measurements of continuous 
variables such as growth or weight to increase or decrease, but they are confident it will act in only one 
direction. For such endpoints, the 2-sided trend test is appropriate, described in 5.1.6. One difference 
between implementing step-down procedures for quantal data and continuous data is that two-sided tests 
are much more likely to be of interest for continuous variables. Such a model is rarely appropriate for 
quantal data, as only increased incidence rate above background (control) incidence are of interest in 
toxicology.  

125. The two-sided version of the step-down procedure is based on the underlying model: 

µ0 ≥ µ1 ≥ µ2 ≥ µ3 ≥ . . . ≥ µk 

or 

µ0 ≤  µ1 ≤  µ2 ≤  µ3 ≤ . . . ≤  µk. 

126. Under this model, in testing the hypothesis that all population means are equal against the 
alternative that at least one inequality is strict, one first tests separately each 1-sided alternative at the 
0.025-level of significance with all doses present. If neither of these tests is significant, the NOEC is higher 
than the highest concentration. If both of these tests are significant, a trend-based procedure should not be 
used, as the direction of the trend is unclear.  If exactly one of these tests with all the data is significant, 
then the direction of all further tests is in the direction of the significant test with all groups. Thereafter, the 
procedure is as in the 1-sided test, except all tests are at the 0.025 significance level to maintain the overall 
0.05 false positive rate.  

127. Where it is biologically sensible, it is preferable to test the one-sided hypothesis, because random 
variation in one direction can be ignored, and as a result, statistical tests of the one-sided hypothesis are 
more powerful than tests of the two-sided hypothesis.  

128. Note that a hypothesis test based on model 2 assumes only a monotone dose-response rather than a 
precise mathematical form, such as is required for regression methods (Chapter 6) or the biologically based 
models (Chapter 7). 
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5.1.3. Comparisons of single-step (pairwise comparisons) or step-down trend tests to determine the 
NOEC  

129. In general, determining the NOEC for a study involves multiple tests of hypotheses (i.e., a family 
of hypotheses is tested), either pairwise comparisons of treatment groups, or a sequence of tests of the 
significance of trend. For that reasons, statisticians have developed tests to control the family-wise error 
rate, FWE, (the probability that one or more of the null hypotheses in the family will be rejected 
incorrectly) in the multiple comparisons performed to identify the NOEC. For example, suppose one 
compares each of ten treatments to a common control using a simple t-test with a false positive error rate of 
5% for each comparison.  Suppose further that none of the treatments has an effect, i.e., all of the treatment 
and control population means are equal.  For each comparison, there is a 5% chance of finding a significant 
difference between that sample treatment mean and the control. The chance that at least one of the ten 
comparisons is wrongly declared significant is much higher, possibly as high as 1-.9510 =0.4 or 40%. The 
method of controlling the family-wise error rate has important implications for the power of the test. There 
are two approaches that will be discussed: single-step procedures and step-down procedures. There are 
numerous variations within each of these two classes of procedures that are suited for specific data types, 
experimental designs and data distributions.  

130. A factor that must be considered in selecting the methods for analysing the results from a study is 
whether the study is a dose-response experiment. In this context, a dose-response experiment is one in 
which treatments consist of a series of increasing doses of the same test material. Monotone responses 
from a dose-response experiment are best analysed using step-down procedures based on trend tests (e.g., 
the Cochran-Armitage, Williams, or Jonckheere-Terpstra trend test), whereas non-monotone responses 
must be analysed by pairwise comparisons to the control (e.g., Fisher’s exact test or Dunnett’s test). This 
section will discuss when to use each of these two approaches. 

131. Single-step procedures amount to performing all possible comparisons of treatment groups to the 
control. Multiple comparisons to the control may be made, but there is no ordered set of hypotheses to test, 
and no use of the sequence of outcomes in deciding which comparisons to make. Examples of the single-
step approach include the use of the Fisher’s exact test, the Mann-Whitney, Dunnett and Dunn tests. Since 
many comparisons to the control are made, some adjustment must be made for the number of such 
comparisons to keep the family-wise error (FWE) rate at a fixed level, generally 0.05. With tests that are 
inherently single comparison tests, such as Fisher’s exact and Mann-Whitney, a Bonferroni adjustment can 
be made: a study with k treatment levels would be analysed by performing the pair-wise comparisons of 
each of the treatment groups to the control group, each performed at a significance level of α/k instead of 
α. (This is the Bonferroni adjustment.) Equivalently, the calcutaed p-value ignoring multiplicities is 
multiplied by k.  That is, pb

i =k*pi The Bonferroni adjustment is generally overly conservative, especially 
for large k. Modifications reduce the conservatism while preserving the FWE at 0.05 or less. 

132. For the Holm modification of the Bonferroni adjustment, arrange the k unadjusted p-values for all 
comparisons of treatments to control in rank order, i.e., p(1)≤ p(2)≤ p(3)≤ … ≤ p(k) . Beginning with p(1), 
compare p(i) with α/(k –i+1), stopping at the first non-significant comparison. If the smallest i for which p(i) 
exceeds α/(k –i+1) is i=j, then all comparisons with i>j are judged non-significant without further 
comparisons. It is helpful (Wright (1992)) to report adjusted p-values rather than the above comparisons. 
Thus, report p*(1) = p(1)*(k-i+1) and then compare each adjusted p-value to α. Table 5.1 illustrates the 
advantage of the Bonferroni-Holm method. In this hypothetical example, only the comparison of treatment 
4 with the control would be significant if the Bonferroni adjustment is used, whereas all comparisons 
except the comparison of the Control with treatment 1 would be significant if the Bonferroni-Holm 
adjustment is used.  
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Comparison Unadjusted p 
value 

Bonferroni-Holm 
Adjusted p value 
p *(i) 

Bonferroni Adjusted 
p-values  
Pb 

i 

Control – Treatment 4 p (1) =0.002 0.002*4=0.008 0.002*4=0.008 

Control – Treatment 2 p (2) =0.013 0.013*3=0.039 0.013*4=0.052 

Control – Treatment 3 p (3) =0.020 0.020*2=0.040 0.02*4=0.08 

Control – Treatment 1 p (4) =0.310 0.310*1=0.310 0.310*4=1. 
Table 5.1 Comparison of Adjusted and Unadjusted P-Values 

133. Alternatives based on the Sidak inequality (each comparison at level 1-(1-α)k ) are also available. 
The Bonferroni and Bonferroni-Holm adjustment guarantee that the family-wise error rate is less than α, 
but they are conservative. Other tests, such as Dunnett’s, have a “built-in” adjustment for the number of 
comparisons made and are less conservative (hence, more powerful). For completeness, it should be 
understood that if only one comparison is made, the Bonferroni and Bonferroni-Holm adjustments leave 
the p-value unchanged.  Of course, there is no need to refer to an adjustment in this simple case, but the 
discussion becomes needlessly complicated if special reference is always made to the case of only one 
comparison.   

134. Step-down procedures are generally preferred where they are applicable. All step-down procedures 
discussed are based on a sequential process consisting of testing an ordered set of hypotheses concerning 
means, ranks, or trend. A step-down procedure based on trend (for example) works as follows: First, the 
hypothesis that there is no trend in response with increasing dose is tested when the control and all dose 
groups are included in the test. Then, if the test for trend is significant, the high dose group is dropped from 
the data set, and the hypothesis that there is no trend in the reduced data set is tested. This process of 
dropping treatment groups and testing is continued until the first time the trend test is non-significant. The 
highest dose in the reduced data set at that stage is then declared to be the NOEC. Distinguishing features 
of step-down procedures are that the tests of hypothesis must be performed in a given order, and that the 
outcome of each hypothesis test is evaluated before deciding whether to test the next hypothesis in the 
ordered sequence of hypotheses. It is these two aspects of these procedures that account for controlling the 
family-wise error (FWE) rate. 

135. A step-down method typically uses a critical level larger than that used in single-step procedures, 
and seeks to limit the number of comparisons that need to be made. Indeed, the special class of “fixed-
sequence” tests described below fix the critical level at 0.05 for each comparison but bound the FWE rate 
at 0.05. Thus, step-down methods are generally preferable to the single-step methods as long as the 
response means are monotonic.  

136. Tests based on trend are logically consistent with the anticipated monotone pattern of responses in 
toxicity tests. Step-down procedures make use of this ordered alternative by ordering the tests of 
hypotheses. This minimises the number of comparisons that need to be made, and in all the methods 
discussed here, a trend model is explicitly assumed (and tested) as a part of the procedure. 

137. Procedures that employ step-down trend tests have more power than procedures that rely on 
multiple pairwise comparisons when there is a monotone dose-response because they make more use of the 
biology and experimental design being analysed. When there is a monotone dose-response, procedures that 
compare single treatment means or medians against the control, independent of the results in other 
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treatments (i.e. single-step procedures), ignore important and relevant information, and suffer power loss as 
a result. 

138. The trend models used in the step-down procedures do not assume a particular precise 
mathematical relationship between dose and response, but rather use only monotonicity of the dose-
response relationship. The underlying statistical model assumes a monotone dose-response in the 
population means, not the observed means. 

139. Rejection of the null hypothesis (i.e., rejecting the hypothesis that all group means, or medians, or 
distributions are equal) in favour of the stated alternative implies that the high dose is significantly 
different from the control. The same logic applies at each stage in the step-down application of the test to 
imply, whenever the test is significant, that the high dose remaining at that stage is significantly different 
from the control. These tests are all applied in a 1-sided manner with the direction of the alternative 
hypothesis always the same. Moreover, this methodology is general, and applies to any legitimate test of 
the stated hypotheses under the stated model. That is, one can use this fixed-sequence approach with the 
Cochran-Armitage test on quantal data, the Jonckheere-Terpstra or Williams or Brown-Forsythe tests of 
trend on continuous data. Other tests of trend can also be used in this manner.  

140. Deciding between the two approaches Bauer (1997) has shown that certain tests based on a 
monotone dose-response can have poor power properties or error rates when the monotone assumption is 
wrong. For example, departures from monotonicity in non-target plant data are common, where they arise 
from low dose stimulation. Davis and Svendsgaard (1990) suggest that departures from monotonicity may 
be more common than previously thought.. These results suggest that a need for caution exists. There are 
two testing philosophies used to determine whether a monotone dose-response is appropriate. Some 
recommend assessing in a general way for an endpoint or class of endpoints, whether a monotone dose-
response is to be expected biologically. If a monotone trend is expected, then trend methods are used. This 
procedure should be augmented, at a minimum, by adding that, if a cursory examination of the data shows 
strong evidence of departure from monotonicity (i.e., large, consistent departures), then pairwise methods 
should be used instead.  

141. A second philosophy recommends formal tests to determine if there is significant monotonicity or 
significant departure from monotonicity. With continuous data, one can use either a positive test for 
monotonicity (such as Bartholomew’s test) and proceed only if there is evidence of monotonicity, or use a 
“negative” test for departure from monotonicity (such as sets of orthogonal contrasts for continuous 
responses and a decomposition of the chi-square test of independence for quantal responses) and proceed 
unless there is evidence of non-monotonicity. Details on these procedures are given in Annexes 5.1 and 
5.3. Either philosophy is acceptable. The second approach is grounded in the idea that monotonicity is the 
rule and that it should take strong evidence to depart from this rule. Both approaches reduce the likelihood 
of having to explain a significant effect at a low or intermediate concentration when higher concentrations 
show no such effect. The “negative” testing approach is more consistent with the way tests for normality 
and variance homogeneity are used and is more likely to result in a trend test than a method that requires a 
significant trend test to proceed. This is what is shown in the flow diagrams presented below. 

142. Formal tests for monotonicity are especially desirable in a highly automated test environment. One 
simple procedure that can be used in this situation for continuous responses is to construct linear and 
quadratic contrasts of normalised rank statistics (to avoid the complications that can arise from non-normal 
or heterogeneous data). If the linear contrast is not significant and the quadratic contrast is significant, 
there is evidence of possible non-monotonicity that calls for closer examination of the data or pairwise 
comparison methods. Otherwise, a trend-based analysis is used. A less simple, but more elegant procedure 
would be to construct simultaneous confidence intervals for the mean responses assuming monotonicity 
(i.e., isotonic estimators based on maximum likelihood criteria – see Annex 5.3) and use a trend approach 
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unless one or more sample (i.e., non-isotonic) means fall outside the associated confidence interval. For 
quantal data using the Cochran-Armitage test, there is a built-in test for lack of monotonicity.   

143. Where expert judgement is used, formal tests for monotonicity or its lack may be replaced by 
visual inspection of the data, especially of the mean or median responses. The same concept applies to 
assessing normality and variance homogeneity. 

5.1.4. Dose metric in trend tests  

144. Various authors have evaluated the influence on trend tests of the different ways of expressing dose 
(i.e. dose metrics), including actual dose-values, log(dose), and equally-spaced scores (i.e., rank-order of 
doses). Lagakos and Lewis (1985) discuss various dose metrics and prefer the rank-order as a general rule. 
Weller and Ryan (1998) likewise prefer rank ordering of doses for some trend tests.  

145. When dose values are approximately equally spaced on a log scale, there is little difference 
between using log(dose) and rank-order, but use of actual dose values can have the unintended effect of 
turning a trend test into a comparison of high dose to control, eliminating the value of the trend approach 
and compromising its power properties. This is not an issue with some tests, such as the Jonckheere-
Terpstra test discussed below, since rank-order of treatment groups is built into the procedure. With others, 
such as Cochran-Armitage and contrast-based tests, it is an important consideration. 

146. Extensive computer simulations have been done (J. W. Green, in preparation) to compare the use of 
rank-order to dose-value in the Cochran-Armitage test. One simulation study involved over 88,000 sets of 
dose-response scenarios for 4- and 5-dose experiments found 12-17% of the experiments where the rank-
order scoring found lower NOEC than dose-value did and only 1% of the experiments where dose-value 
scores lead to lower NOEC than when rank-order scores were used. In the remaining cases, the two 
methods established the same NOEC. While these simulations results do not, by themselves, justify the use 
of rank-order over actual dose levels or their logarithms, they do suggest that use of rank-order will not 
lessen the power of statistical tests. All trend based tests discussed in this document, including contrast 
tests for monotonicity, are based on rank ordering of doses. 

5.1.5. The Role of Power in Toxicity Experiments 

147. The adequacy of an experimental design and the statistical test used to analyse study results are 
often evaluated in terms of the power of the statistical test. Power is defined as the probability that a false 
null hypothesis will be rejected by the statistical test in favour of a true alternative. That power depends on 
the alternative hypothesis. In the context of toxicology, the larger the effect, the higher the power to detect 
that effect. So, if a toxicant has had some effect on the organisms in a toxicity test, power is the probability 
that a difference between treatment groups and the control will be detected. The power of a test can be 
calculated if we know the size of the effect to be detected, the variability of the endpoint measured, the 
number of treatment groups, and the number of replicates in each treatment group. (Detailed discussions 
are given in sections 5.2 and 5.3 and Annexes 5.1 and 5.3).  

148. It should be understood that the goal of selecting a method for determining a NOEC is not to find 
the most powerful method. Rather, the focus should be on selecting methods most appropriate for the data 
and end result. Power is certainly an ingredient in this selection process. As discussed below, power can be 
used in designing experiments and selecting statistical tests to reduce animal use without loss of statistical 
power.  This can be accomplished by selecting an inherently more powerful test applied to fewer animals, 
so that the result is to retain the power of more traditional tests but use fewer animals.   

149. The primary use of power analysis in toxicity studies is in the design stage. By demonstrating that a 
study design and test method have adequate power to detect effects that are large enough to be deemed 
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important, if we then find that, at a given dose, there is no statistically significant effect, we can have some 
confidence that there is no effect of concern at that dose. However, power does not quantify this 
confidence. Failure to adequately design or control an experiment so that statistical tests have adequate 
power can result in large effects being found to be statistically insignificant.  On the other hand, it is also 
true that a test can be so powerful that it will find statistically significant effects of little importance. 

150. Deciding on what effect size should be considered to be large enough to be important is difficult, 
and may depend on both biological and regulatory factors. In some cases, the effect size may be selected 
by regulatory agencies or specified in guidelines.  

151. A requirement to demonstrate an adequate power to detect effects of importance will remove any 
perceived reward for poor experimental design or technique, as poor experimental design will be shown to 
have low power to detect important effects, and will lead to the selection of more powerful statistical tests 
and better designs. The latter will be preferable to the alternative of increasing sample sizes. Indeed, it is 
sometimes possible to find statistical procedures with greater power to detect important differences or 
provide improved estimates and simultaneously decrease sample sizes. 

152. For design purposes, the background variance can be taken to be the pooled within-experiment 
variance from a moving frame of reference from a sufficiently long period of historical control data with 
the same species and experimental conditions. The time-window covered by the moving frame of reference 
should be long enough to average out noise without being so long that undetected experimental drift is 
reflected in the current average. If available, a three-to-five year moving frame of reference might be 
appropriate. When experiments must be designed using more limited information on variance, it may be 
prudent to assume a slightly higher value than what has been observed. Power calculations used in design 
for quantal endpoints must take the expected background incidence rate into account for the given 
endpoint, as both the Fisher Exact and Cochran-Armitage test are sensitive to this background rate, with 
highest power achieved for a zero background incidence rate. The background incidence rate can be taken 
to be the incidence rate in the same moving frame of reference already mentioned. 

153. While at the design stage, power must, of necessity, be based on historical control data for initial 
variance estimates, it may also be worthwhile to do a post-hoc power analysis as well to determine whether 
the actual experiment is consistent with the criteria used at the design stage. Care must be taken in 
evaluating post-hoc power against design power. Experiment-to-experiment variation is expected and 
variance estimates are more variable than means. The power determination based on historical control data 
for the species and endpoint being studied should be reported.  

154. Alternatively, for experimental designs constructed to give an acceptable power based on an 
assumed variance rather than on historical control data, a post-hoc test can be done to compare the 
observed variance to the variance used in designing the experiment. If this test finds significantly higher 
observed variance (e.g., based on a chi-square or F-test) than that used in planning, then the assumptions 
made at design time may need to be reassessed.  

 5.1.6. Experimental design 

155. Factors that must be considered when developing experimental designs include the number and 
spacing of doses or exposure levels, the number of subjects per dose group, and the nature and number of 
subgroups within dose groups. Decisions concerning these factors are made so as to provide adequate 
power to detect effects that are of a magnitude deemed biologically important.  

156. The choice of test substance concentrations is one aspect of experimental design that must be 
evaluated for each individual study. The goal is to bracket the NOEC with concentrations that are as 
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closely spaced as practical. If limited information on the toxicity of a test material is available, test 
concentrations or doses can be selected to cover a range somewhat greater than the range of exposure 
levels expected to be encountered in the field and should include at least one concentration expected not to 
have a biologically important effect. If more information is available this range may be reduced, so that 
doses can be more closely spaced. Where effects are expected to increase approximately in proportion to 
the log of concentration, concentrations should be approximately equally spaced on a log scale. Three to 
seven concentrations plus concomitant controls are suggested, with the smaller experiment size typical for 
acute tests and larger experiment sizes most appropriate when preliminary dose-finding information is 
skimpy.   

157. The trade-off between number of subjects per subgroup and number of subgroups per group should 
be based on power calculations using historical control data to estimate the relative magnitude of within- 
and among- subgroup variation and correlation. If there are no subgroups, then there is no way to 
distinguish housing effects from concentration effects and neither between- and within-group variances or 
nor correlations can be estimated, nor is it possible to apply any of the statistical tests described for 
continuous responses to subgroup means other than the Jonckheere-Terpstra test. Thus, a minimum of two 
subgroups per concentration is recommended; three subgroups are much better than two; four subgroups 
are better than three. The improvement in modelling falls off substantially as the number of subgroups 
increases beyond four. (This can be understood on the following grounds. The modelling is improved if we 
get better estimates of both among- and within-subgroup variances. The quality of a variance estimate 
improves as the number of observations on which it is based increases. Either sample variance will have, at 
least approximately, a chi-squared distribution. The quality of a variance estimate can be measured by the 
width of its confidence interval and a look at a chi-squared table will verify the statements made.) The 
precise needs for a given experiment will depend on factors such as the relative and absolute size of the 
between- and within-replicate variances.  Examples 1 and 2 in Annex 5.3 illustrate the trade-offs between 
replicates per concentration and subjects per replicate. 

158. In any event, the number of subgroups per concentration and subjects per subgroup should be 
chosen to provide adequate power to detect an effect of magnitude judged important to detect. This power 
determination should be based on historical control data for the species and endpoint being studied.  

159. Since the control group is used in every comparison of treatment to control, consideration should 
be given to allocating more subjects to the control group than to the treatment groups in order to optimise 
power for a given total number of subjects. The optimum allocation depends on the statistical test to be 
used. A widely used allocation rule was given by Dunnett (1955), which states that for a total of N subjects 
and k treatments to be compared to a common control, if the same number, n, of subjects are allocated to 
every treatment group, then the number, n0, to allocate to the control to optimise power is determined by 
the so-called square-root rule. By this rule, the value of n is (the integer part of) the solution of the equation 
N= kn + n√k, and n0 = N - kn. [It is almost equivalent to say n0 = n√k.] This has been shown to optimise 
power for Dunnett’s test. It is used, often without formal justification, for other pairwise tests, such as the 
Mann-Whitney and Fisher exact test. Williams (1972) showed that the square-root rule may be somewhat 
sub-optimal for his test and optimum power is achieved when √k in the above equation is replaced by 
something between 1.1√k and 1.4√k.  

160. The optimality of the square-root rule to other tests, such as Jonckheere-Terpstra and Cochran-
Armitage has not been published in definitive form, but simulations (manuscript in preparation by J. W. 
Green) show that for the step-down Jonckheere-Terpstra test, power gains of up to 25% are common under 
this rule compared to results from equal sample sizes. In all cases examined, the power is greater following 
this rule compared to equal sample sizes, where the total sample size is held constant In the absence of 
definitive information on the Jonckheere-Terpstra and other tests, it is probably prudent to follow the 
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square-root rule for pairwise, Jonckheere-Terpstra and Cochran-Armitage tests and either that or Williams’ 
modification of the rule for other step-down procedures.  

161. The selection of an allocation rule is further complicated in experiments where two controls are 
used, since if the controls are combined for further testing, a doubling of the control sample size is already 
achieved. Since experience suggests that most experiments will find no significant difference between the 
two controls, the optimum strategy for allocating subjects is not necessarily immediately clear. This of 
course would not apply if a practice of pooling of controls is not followed. 

162. The reported power increases from allocating subjects to the control group according to the square 
root rule do not consider the effect of any increase in variance as concentration increases. One alternative, 
not without consequences in terms of resources and treatment of animals, is to add additional subjects to 
the control group without subtracting from treatment groups. There are practical reasons for considering 
this, since a study is much more likely to be considered invalid when there is loss of information in the 
controls than in treatment groups.  

5.1.7. Treatment of Covariates and Other Adjustments to Analysis 

163. It is sometimes necessary to adjust the analysis of toxicity data by taking into account some 
restriction on randomisation, compartmentalisation (housing) or by taking into account one or more 
covariates that might affect the conclusions. Examples of potential covariates include: initial body weights, 
initial plant heights, and age at start of test. While a thorough treatment of this topic will not be presented, 
some attention to this topic is in order. 

164. For continuous, normally distributed responses with homogeneous variances, analysis of 
covariance (ANCOVA) is well developed. Hocking (1985) and Milliken and Johnson (1984) are among 
the many references on this topic. For continuous responses that do not meet the normality or homogeneity 
requirements, non-parametric ANCOVA is available. 

165. Shirley (1981) indicates why nonparametric methods are needed in some situations. Stephenson 
and Jacobson (1988) contain a review of papers on the subject up to 1988. Subsequent papers include 
Wilcox (1991) and Knoke (1991). Stephenson and Jacobson recommend a procedure that replaces the 
dependent variable with ranks but retains the actual values of the independent variable(s). This has proved 
useful in toxicity studies. Seaman et al (1985) discuss power characteristics of some non-parametric 
ANCOVA procedures. 

166. When the response variable is quantal and is assumed to follow the binomial distribution, 
ANCOVA can be accomplished through logistic regression techniques. In this case, the covariate is a 
continuous regressor variable and the dose groups are coded as ‘dummy variables.’ This approach can be 
more generally described in the Generalized Linear Model (GLM) framework (McCullagh and Nelder 
(1989)). For quantal data, Koch et al (1998), Thall and Vail (1990), Harwell and Serlin (1988), Tangen and 
Koch (1999a, 1999b) consider some relevant issues.  

167. Adjustments must be made to statistical methods when there are restrictions on randomisation of 
subjects such as housing of subjects together. This is discussed for both quantal and continuous data in 
sections 5.2.2.6, 5.2.3, and 5.3.2.7, where the possibility of correlations among subjects housed together is 
considered, as are strategies for handling this problem. In the simple dose-response designs being 
discussed in this chapter, other types of restrictions on randomisation are less common. However, there is a 
large body of literature on the treatment of blocking and other issues that can be consulted. Hocking (1985) 
and Milliken and Johnson (1984) contain discussions and additional references. 
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168. Transformation of the doses (i.e. not response measures) in hypothesis testing is restricted, in this 
chapter, to the use of rank order of the doses. For many tests, the way that dose values (actual or rank 
order) are expressed has no effect on the results of analysis. An exception is the Cochran-Armitage test. 
(See Annex 5.1) 

5.2. Quantal data (e.g., Mortality, Survival) 

5.2.1. Hypothesis testing with quantal data to determining NOEC values  

169. Selection of methods and experimental designs in this chapter for determining NOEC values 
focuses on identifying the tests most appropriate for detecting effects. The appropriateness of a given 
method hinges on the design of the experiment and the pattern of responses of the experimental units. 
Figure 5.1 illustrates an appropriate scheme for method selection, and identifies several statistical methods 
that are described in detail below. There are, of course, other statistical procedures that might be chosen. 
The following discussion identifies many of the procedures that might be used, gives details of some of the 
most appropriate, and attempts to provide some insight into the strengths and weaknesses of each method. 

170. If there are two negative controls (i.e., solvent and non-solvent) Fisher’s exact test applied just to 
the two controls is used to determine whether the two groups differ wherever it is appropriate to analyse 
individual sampling units. Where replicate means or medians are the unit for analysis, the Mann-Whitney 
rank sum test can be used. Further discussion of when each approach is appropriate is given in sections 
5.2.2 and 5.2.2.3. Section 4.2.3 contains discussions of issues regarding multiple controls in an ecotoxicity 
study.  

171. Figure 5.1 identifies a number of powerful methods for the analysis of quantal data. There are, of 
course, other statistical procedures that might be chosen. The following discussion identifies many of the 
procedures that might be used, gives details of some of the most appropriate, and attempts to provide some 
insight into the strengths and weaknesses of each method.  

172. The methods used for determining NOEC values on quantal data can be categorised according to 
whether the tests involved are parametric or non-parametric and whether the methods are single-step or 
step-down. Table 5.2 lists methods that can be used to determine NOEC values. Some of these methods are 
applicable only under certain circumstances, and some methods are preferred over the others.  

173. Except for the two Poisson tests, those tests listed in the column “Parametric” can be performed 
only when the study design allows proportion of organisms responding in replicated experimental units to 
be calculated (i.e. there are multiple organisms within each of multiple test vessels within each treatment 
group). Such a situation yields multiple responses, namely proportions, for each concentration, and these 
proportions can often be analysed as continuous. For very small samples, such a practice is inappropriate.  

174. Typically, if responses increase or remain constant with increasing dosage, the trend-based 
methods perform better than pairwise methods, and for most quantal data, a step-down approach based on 
the Cochran-Armitage test is the most appropriate of the listed techniques. The strengths and weaknesses 
of most listed methods are discussed in more detail below.  
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  Parametric  Non-Parametric 

Single-Step 
(Pair-wise) 

Dunnett 
Poisson comparisons 

Mann-Whitney with Bonferroni-Holm adjustments. 
Chi-squared with Bonferroni-Holm adjustment 
Steel’s Many-to-One 
Fisher’s exact test with Bonferroni-Holm adjustment. 

Step-down  
(Trend based) 

Poisson Trend Williams 
Bartholomew 
Welsch 
Brown-Forsythe  
Sequences of linear 
     contrasts 

Cochran-Armitage  
Jonckheere-Terpstra test 
Mantel-Haenszel 

 
Table 5.2 Methods used for determining NOEC values with quantal data.  

All listed single-step methods are based on pair-wise comparisons, and all step-down methods are based on trend-tests. The tests 
listed in Table 5.2 are well established as tests of the stated hypothesis in the statistics literature. Note: (The Mann-Whitney test is 
identical to the Wilcoxon rank-sum test.) 

5.2.2. Parametric versus non-parametric tests 

175. Parametric tests are based on assumptions that the responses being analysed follow some given 
theoretical distribution. Except for the Poisson methods, the tests listed in Table 5.2. as parametric all 
require that the data be approximately normally distributed (possibly after a transformation).The normality 
assumption can be met for quantal data only if the experimental design includes treatment groups that are 
divided into subgroups, the quantal responses are used to calculate proportions responding in each of the 
subgroups, and these proportions are the observations analysed. These proportions are usually subjected to 
a normalising transformation (see sections 4.32, 4.33, and 4.34), and a weighted ANOVA is performed, 
perhaps with weights proportional to subgroup sizes (Cochran (1943)). (It is noteworthy that some 
statistical packages, such as SAS version 6, do not always perform multiple comparisons within a weighted 
ANOVA correctly.) This approach limits the possibilities of doing trend tests to those based on contrasts, 
including Welsch and Brown-Forsythe tests (Roth (1983); Brown and Forsythe (1974)). Non-trend tests 
include versions of Dunnett’s test for pairwise comparisons allowing for unequal variances (Dunnett 
(1980); Tamhane (1979)). These methods may not perform satisfactorily for quantal data, partly due to a 
loss of power in analysing subgroup proportions. An example is given on Annex 5.1. 

176. The Cochran-Armitage test is listed as non-parametric even though it makes explicit use of a 
presumed binomial distribution of incidence within treatment groups. Some reasons for this are given in 
Annex 5.1. Fisher’s Exact test is likewise listed as non-parametric, even though it is based on the 
geometric distribution. The Jonckheere-Terpstra test applied to subgroup proportions is certainly non-
parametric. An advantage of Jonckheere-Terpstra over the cited parametric tests is that the presence of 
many zeros poses no problem for the analysis and it provides a powerful step-down procedure in both 
large- and small-sample problems, provided the number of subgroups per concentration is not too small. 
An example in Annex 5.3 will illustrate this concern. 

PBN1465



 ENV/JM/MONO(2006)18 

 51

5.2.2.1. Single-step procedures  

177. Suitable single-step approaches for quantal data are Fisher’s exact test and the Mann-Whitney test 
to compare each treatment group to the control, independently of other treatment groups, with Bonferroni-
Holm adjustment. Details of these tests are given in annex 5.1. 

5.2.2.2. Step-Down Procedures  

178. Suitable step-down procedures for quantal data are based on the Cochran-Armitage and Poisson 
trend tests. First, a biological determination is made whether or not to expect a monotone dose-response. If 
that judgement is to expect monotonicity, then the step-down procedure described below is followed unless 
the data strongly indicates non-monotonicity. If the judgement is not to expect monotonicity, then Fisher’s 
exact test is used. 

179. An analysis of quantal data is based on the relationships between the response (binary) variable and 
factors. In such cases, the Pearson Chi-Square (χ2) test for independence can be used to find if any 
relationships exist.  

180. Test for monotone dose-response: If one believes on biological grounds that there will be a 
monotone dose-response, then the expected course of action is to use a trend test. However, statistical 
procedures should not be followed mindlessly. Rather, one should examine the data to determine whether it 
is consistent with the plan of action. There is a simple and natural way to check whether the dose-response 
is monotone. The k-1 df Pearson Chi-Square statistic decomposes into a test for linear trend in the dose-
response and a measure of lack of fit or lack of trend, 2

)2k(
2

)1(
2

)1k( −− χ+χ=χ where χ2
(1) is the calculated 

Cochran-Armitage linear trend statistic and χ2
(k-2) is the Chi-Square statistic for lack of fit. The details of 

the computations are provided in annex 5.1.  

181. If the trend test is significant when all doses are included in the test, then proceed with a trend-
based step-down procedure. If the trend test with all doses included is not significant but the test for lack of 
fit is significant, then this indicates that there are differences among the dose groups but the dose-response 
is not monotone. In this event, even if we expected a monotone dose-response biologically, it would be 
unwise to ignore the contrary evidence and one should proceed with a pairwise analysis.  

182. The Cochran-Armitage trend test is available in several standard statistical packages including SAS 
and StatXact. StatXact also provides exact power calculations for the Cochran-Armitage trend test with 
equally spaced or arbitrary doses.   

183. The step-down procedure: A suitable approach to analysing monotonic response for quantal data is 
as follows. Perform a Cochran-Armitage test for trend on responses from all treatment groups including the 
control. If the Cochran-Armitage test is significant at the 0.05 level, omit the high dose group, re-compute 
the Cochran-Armitage and Chi-Squared tests with the remaining dose groups. Continue this procedure 
until the Cochran-Armitage test is first non-significant at the 0.05 level. The highest concentration 
remaining at this stage is the NOEC. 

184. Possible Modifications of the Step-Down Procedure:  There are two possible modifications to 
consider to the above. First, as noted by Cochran (1943), Fisher’s Exact test is more powerful for 
comparing two groups than the Cochran-Armitage test when the total number of subjects in the two groups 
is less than 20 and also when that total is less than 40 and the expected frequency of any cell is less than 5. 
This will include most laboratory ecotoxicology experiments. For this reason, if the step-down procedure 
described above reaches the last possible stage, where all doses above the lowest tested dose are 
significant, then we can substitute Fisher’s exact test for Cochran-Armitage for the final comparison on the 
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grounds that it is a better procedure for this single comparison. Such substitution does not alter the power 
characteristics or theoretical justification of the Cochran-Armitage test for doses above the lowest dose, but 
it does improve the power of the last comparison. 

185. Second, if the step-down procedure terminates at some higher dose because of a non-significant 
Cochran-Armitage test, but there is at this stage a significant test for lack of monotonicity, one should 
consider investigating the lower doses further. This can be done by using Fisher’s exact test to compare the 
remaining dose groups to the control, with a Bonferroni-Holm adjustment. The Bonferroni-Holm 
adjustment would take into account only the number of comparisons actually made using Fisher’s exact 
test.  The inclusion of a method within the step-down procedure to handle non-monotonic results at lower 
doses is suggested for quantal data (but not for continuous data) for two reasons. First, there is a sound 
procedure built into the decomposition of the Chi-squared test for assessing monotonicity that is directly 
related to the Cochran-Armitage test. Secondly, experience suggests that quantal responses are more prone 
to unexpected changes in incidence rates at lower doses than continuous responses, so that a strict 
adherence to a pure step-down process may miss some adverse effects of concern. 

5.2.2.3. Alternative Procedures 

186. These following parametric and nonparametric procedures are discussed because under some 
conditions, a parametric analysis of subgroup proportions may be the only viable procedure. This is 
especially true if there are also significant differences in the number of subjects within each subgroup, 
making analysis of means or medians problematic by other methods. 

187. Pairwise ANOVA (weighted by subgroup size) based methods performed on proportion affected 
have sometimes been used to determine NOEC values. While there can be problems with these proportion 
data meeting some of the assumptions of ANOVA (e.g., variance homogeneity), performing the analysis 
on proportion affected opens up the gamut of ANOVA type methods, such as Dunnett’s test and methods 
based on contrasts. Failure of data to satisfy the assumption of homogeneity of variances can often be 
corrected by the use of an arcsine-square-root or other normalising and variance stabilising transformation. 
However, this approach tends to have less power than step-down methods designed for quantal data that 
are described above, and is especially problematic for very small samples. These ANOVA based methods 
may not be very powerful and are not available if there are not distinct subgroups of multiple subjects each 
within each concentration. Williams’ test is a trend alternative that can be used, when data are normally 
distributed with homogeneous variance.  

188. A nonparametric trend test that can be used to analyse proportion data is the Jonckheere-Terpstra 
trend test, which is intended for use when the underlying response on each subject is continuous and the 
measurement scale is at least ordinal. The most common application in a toxicological setting is for 
measures such as size, fecundity, and time to an event. The details of this and other tests that are intended 
for use with continuous responses are given in section 5.3. A disadvantage of the use of the Jonckheere-
Terpstra trend test for analysing subgroup proportions where sample sizes are unequal is that it does not 
take sample size into account. It is not proper to treat a proportion based on 2 animals with the same weight 
as one based on 10, for example. For most toxicology experiments where survival is the endpoint, the 
sample sizes are equal, except for a rare lost subject, so this limitation is often of little importance. Where a 
sub lethal effect on surviving subjects is the endpoint, then this is a more serious concern. 

189. The methods described in Table 5.2 are sometimes used but tend to be less powerful than one 
designed for quantal data, such as those so indicated in Table 5.2. They are appropriate only if responses of 
organisms tested are independent, and there is not significant heterogeneity of variances among groups 
(i.e., within-group variance does not vary significantly among groups). If there is a lack of independence or 
significant heterogeneity of variances, then modifications are needed. Some such modifications are 
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discussed below. In the ANOVA context, a robust ANOVA (e.g., Welch's variance-weighted one-way 
ANOVA) that does not assume variance homogeneity can be used. 

190. Poisson tests can be used as alternatives in both non-trend and trend approaches. (See annex 5.1) A 
robust Poisson approach (Weller and Ryan (1998)) using dummy variables for groups, or multiple Mann-
Whitney tests using subgroup proportions as the responses could be used. In each case, an adjustment for 
number of comparisons should be made. For the robust Poisson model, this would be of the Bonferroni-
Holm type. For the Mann-Whitney test, the Bonferroni-Holm adjustment could be used or these pairwise 
comparisons could be “protected” by requiring a prior significant Kruskal-Wallis test (i.e. an overall rank-
based test of whether any group differs from any other). It should be noted that the Mann-Whitney 
approach does not take subgroup size into account, but this will usually not be an issue for survival data. 

 5.2.2.4. Assumptions of methods for determining NOEC values  

191. The assumptions that must be met for the listed methods for determining NOEC values vary 
according to the methods. Assumptions common to all methods are given below, while others apply only 
to specific methods. The details on the latter are given in annex 5.1. 

192. Assumption: Responses are independent. All methods listed in Table 5.2.1 are based on the 
assumption that responses are independent observations. Failure to meet this assumption can lead to highly 
biased results. If organisms in a test respond independently, they can be treated as binomially distributed in 
the analysis.(See section 4.2.2 for further discussion.) It is not uncommon in toxicology experiments for 
treatment groups to be divided into subgroups. For example, an aquatic experiment may have subjects 
exposed to the same nominal concentration but grouped in several different tanks or beakers. It sometimes 
happens that the survival rate within these subgroups varies more from subgroup to subgroup than would 
be expected if the chance of dying were the same in all subgroups. This added variability is known as 
extra-binomial (or extra-Poisson) variation, and is an indication that organisms in the subgroups are 
responding to different levels of an uncontrolled experimental factor (e.g., subgroups are exposed to 
differing light levels or are being held at differing temperatures) and are not responding independently. In 
this situation, correlations among subjects must be taken into account. For quantal responses, an 
appropriate way to handle this is to analyse the subgroup responses; that is, the subgroups are considered to 
be the experimental unit (replicate) for statistical analysis. Note that lack of independence can arise from at 
least two sources: differences in conditions among the tanks and interactions among organisms.  

193. With mortality data, extra-binomial variation (heterogeneity) is not a common problem, but it is 
still advisable to do a formal or visual check. Two formal tests are suggested: a simple Chi-Squared test 
and an improved test of Potthoff and Whittinghill (1966). Both tests are applied to the subgroups of each 
treatment group, in separate tests for each treatment group. While these authors do not suggest one, an 
adjustment for the number of such tests (e.g., Bonferroni) is advisable. It should be noted also that the Chi-
squared test can become undependable when the number of expected mortalities in a Chi -squared cell is 
less than five. In this event, an exact permutation version of the Chi-squared test is advised and is available 
in commercially available software, such as StatXact and SAS. 

194. If organisms are not divided into subgroups, lack of independence cannot be detected easily, and 
the burden for establishing independence falls to biological argument. If there is a high likelihood of 
aggression or competition between organisms during the test, responses may not be independent, and this 
possibility should be considered before assigning all organisms in a test level to a single test chamber.  

195. It should be noted that even if subgroup information is entered separately, a simple application of 
the Cochran-Armitage test ignores the between-subgroup (i.e., within-group) variation and treats the data 
as though there were no subgrouping. This is inappropriate if heterogeneity among subgroups is 
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significant. The same is true of simple Poisson modelling. Thus, if significant heterogeneity is found, an 
alternative analysis is advised. One in particular deserves mention. This is a modification of the Cochran-
Armitage test developed by Rao and Scott (1992) that is simple to use and is appropriate when there is 
extra-binomial variation. The beta-binomial model of Williams (1975) is another modification of the 
Cochran-Armitage tests that allows for extra-binomial variation. If the Jonckheere-Terpstra test is used, 
there is no adjustment (or any need to adjust) for extra-binomial variation, as that method makes direct use 
of the between-subgroup variation in observed proportions. However, as pointed out above, if there is 
considerable variation in subgroup sizes, this approach suffers by ignoring sample size. 

Treatment of multiple controls 

196. A preliminary test can be done comparing just the two controls as a step in deciding how to 
interpret the experimental data. For quantal (e.g., mortality) data, Fisher’s exact test is appropriate. The 
decision of how to proceed after this comparison of controls is given in section 4.2.3. 

 5.2.3. Additional Information  

197. Annex 5.1 contains details of the principle methods discussed in this section, including examples. 
Annex 5.2 contains a discussion of the power characteristics of the step-down Cochran-Armitage and 
Fisher exact tests. Section 5.3 and Annex 5.3 contain a discussion of the methods for continuous responses 
that can be used to analyse subgroup proportions, as discussed above. 

5.2.4. Statistical Items to be Included in the Study Report  

198. The report describing quantal study results and the outcome of the NOEC determination should 
contain the following items: 

• Test endpoint assessed 

• Number of Test Groups 

• Number of subgroups within each group (if applicable) 

• Identification of the experimental unit 

• Nominal and measured concentrations (if available) for each test group  

• Number exposed in each treatment group (or subgroup if appropriate) 

• Number affected in each treatment group (or subgroup if appropriate) 

• Proportion affected in each treatment group (or subgroup if appropriate) 

• Confidence interval for the percent effect at the NOEC, provided that the basis for the calculation 
is consistent with the distribution of observed responses. (See Annex 5.3). 

• P value for test of homogeneity if performed 

• Name of the statistical method used to determine the NOEC 

• The dose metric used 

• The NOEC 

• P value at the LOEC (if applicable) 

• Design power of the test to detect an effect of biological importance (and what that effect is) 
based on historical control background and variability. 
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• Actual power achieved in the study. 

• Plot of response data versus concentration. 

5.3. Continuous data (e.g., Weight, Length, Growth Rate) 

5.3.1. Hypothesis testing with continuous data to determine NOEC  

199. Figure 5.2 provides a scheme for determining NOEC values for continuous data, and identifies 
several statistical methods that are described in detail below. As reflected in this flow chart, continuous 
monotone dose-response data are best analysed using a step-down test based on the Jonckheere trend test 
or Williams test (the former applicable regardless of the distribution of the data, the latter applicable only if 
data are normally distributed and variances of the treatment groups are homogeneous).  

200. Non-monotonic dose-response data should be assessed using an appropriate pairwise comparison 
procedure. Several such are described below. They can be categorized according whether the data are 
normally distributed or homogeneous. Dunnett’s test is appropriate if the data are normally distributed with 
homogeneous variance. For normally distributed but heterogeneous data, the Tamhane-Dunnett (T3) 
method (Hochberg and Tamhane, 1987) can be used. Alternatively, such data can be analysed by the Dunn, 
Mann-Whitney, or unequal variance t-tests with Bonferroni-Holm adjustment. Non-normal data can be 
analysed by using Dunn or Mann-Whitney tests with Bonferroni-Holm adjustment. Normality can be 
formally assessed using the Shapiro-Wilk test (Shapiro and Wilk 1965) while homogeneity of variance is 
assessed by Levene’s test (Box, 1953). Dunn’s test, if used, should be configured only to compare groups 
to control. All of these procedures are discussed in detail below. Alternatives exist to these if software used 
does not include these more desirable tests.  For normality, the Anderson-Darling, Kolmogorov-Smirnov, 
Cramér-von Mises, Martinez-Iglewicz and D’Agostino Omnibus test are available.  For variance 
homogeneity, Cochran’s Q, Bartlett’s and the Maximum F test can be used.  The tests described in detailed 
in this chapter are recommended where available, based on desirable statistical properties. 

201. There are, of course, a number of statistical procedures that are not listed in Figure 5.2 that might 
also be applied to continuous data. The following discussion identifies many of the procedures that might 
be used, and attempts to provide some insight into the strengths and weaknesses of each..  

202. Table 5.3.1 lists methods that are sometimes used to determine NOEC values. Some of these 
methods are applicable only under certain circumstances, and some methods are preferred over the others. 
Parametric tests listed are performed only when the distribution of the data to be analysed is approximately 
normally distributed. Some parametric methods also require that the variances of the treatment groups be 
approximately equal.  
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 Parametric  Non-Parametric 

Single-Step 

(Pair-wise) 

Dunnett 

Tamhane-Dunnett 

Dunn 

Mann-Whitney with Bonferroni 
correction 

Step-down 

 (Trend based) 

Williams 

Bartholomew 

Welch trend 

Brown-Forsythe trend 

Sequences of linear contrasts 

Jonckheere-Terpstra 

Shirley 

 
Table 5.3.1. Methods used for determining NOEC values with continuous data.  

All listed single step methods are based on pair-wise comparisons, and all step-down methods are based on trend-tests. 

5.3.1.1. Parametric versus non-parametric tests 

203. The parametric tests listed in Table 5.3.1, all require that the data be approximately normally 
distributed. Many also require that the variances of the treatment groups are equal (exceptions are the 
Tamhane-Dunnett, Welch and Brown-Forsythe tests). Parametric tests are desirable when these 
assumptions can be met. The failure of the data to meet assumptions can sometimes be corrected by 
transforming the data. (Section 5.1.10) Some non-parametric tests are almost as powerful as their 
parametric counterparts when the assumptions of normality and homogeneity of variances are met. The 
non-parametric tests may be much more powerful if the assumptions are not met. Furthermore, a test based 
on trend is generally more powerful than a pairwise test. A decision to use a parametric or non-parametric 
test should be based on which best describes the physical, biological and statistical properties of a given 
experiment. 

204. Piegorsch and Bailer (1997), referenced in the document, warns that use of the Jonckheere-Terpstra 
test requires that shapes of distributions or the response variable be equivalent and in many cases, this 
translates to requiring that the response variable have a common variance. They conclude the applicability 
of the Jonckheere-Terpstra test is brought into question when there are large disparities in variances.  
While the Jonckheere-Terpstra test discussed in detail below is a distribution-free trend test, that fact alone 
does not mean that its results are not susceptible to heterogeneity of variance. While most people who have 
investigated the usual nonparametric methods find them less sensitive to these problems than the usual 
parametric procedures, they are not impervious to these problems. To address this question, a large power 
simulation study has been carried out (J. W. Green, manuscript in preparation) comparing the effects of 
variance heterogeneity on the Jonckheere, Dunnett, and Tamhane-Dunnett tests. These simulations have 
shown the Jonckheere test to be much less affected by heterogeneity than the alternatives indicated and to 
lose little of its good power properties.   

205. Heterogeneity and non-normality are inherent in some endpoints, such as first or last day of hatch 
or swim up. There will be observed zero within-group variance in the control and lower concentrations 
quite often and non-zero variance in higher concentrations. No transformation will make the data normal or 
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homogeneous. It may be possible to apply some generalized linear model with a discrete distribution to 
such data, but that is not addressed in this chapter. 

5.3.1.2. Single-step (pairwise) procedures  

206. These tests are used when there is convincing evidence (statistical or biological) that the dose-
response is not monotone. This evidence can be through formal tests or through visual inspection of the 
data, as discussed in section 5.3.2.3. Pairwise procedures are also appropriate when there are differences 
among the treatments other than dose, such as different chemicals or formulations. These tests are 
described briefly here. Details of each test, including mathematical description, power, assumptions, 
advantages and disadvantages, relevant confidence intervals, and examples are discussed in Annex 5.3. 

207. Dunnett’s test: Dunnett’s test is based on simple t-tests from ANOVA but uses a different critical 
value that controls the family-wise error (FWE) rate for the k –1 comparisons of interest at exactly α. Each 
treatment mean is compared to the control mean. This test is appropriate for responses that are normally 
distributed with homogeneous variances and is widely available.  

208. Tamhane-Dunnett Test: Also known as the T3 test, this is similar in intent to Dunnett’s test but 
uses a different critical value and the test statistic for each comparison uses only the variance estimates 
from those groups. It is appropriate when the within-group variances are heterogeneous. It still requires 
within-group responses to be normally distributed and controls the FWE rate at exactly α. 

209. Dunn’s Test: This non-parametric test is based on contrasts of mean ranks. In toxicity testing, it is 
used to compare the mean rank of each treatment group to the control. To control the FWE rate at α or less, 
the Bonferroni-Holm correction (or comparable alternative) should be applied. Dunn’s test is appropriate 
when the populations have identical continuous distributions, except possibly for a location parameter 
(e.g., the group medians differ), and observations within samples are independent. It is used primarily for 
non-normally distributed responses. 

210. Mann-Whitney test: This is also a non-parametric test and can be applied under the same 
circumstances as Dunn’s test. The Mann-Whitney rank sum test compares the ranks of measurements in 
two independent random samples and has the aim of detecting if the distribution of values from one group 
is shifted with respect to the distribution of values from the other. It can be used to compare each treatment 
group to the control. When more than one comparison to the control is made, a Bonferroni-Holm 
adjustment is used. 

5.3.1.3. Step-down trend procedures 

211. For continuous data, two trend tests are described for use in step down procedures, namely the 
Jonckheere-Terpstra and Williams’ Test (described below) that are appropriate provided there is a 
monotone dose-response. Where expert judgement is available, the assessment of monotonicity can be 
through visual inspection. For such an assessment, plots of treatment means, subgroup means, and raw 
responses versus concentration will be helpful. An inspection of treatment means alone may miss the 
influence of outliers. However, a visual procedure cannot be automated, and some automation may be 
necessary in a high-volume toxicology facility. Although not discussed here in detail, the same 
methodology can be applied to the Welsch, Brown-Forsythe or Bartholomew trend tests. 

212. A general step-down procedure is described in the next section. Where the term “trend test” is used, 
one may substitute either “Jonckheere-Terpstra test” or “Williams’ test.” Details of these, as well as 
advantages and disadvantages, examples, power properties, and related confidence intervals for each are 
given in Annex 5.3. 
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5.3.1.4. Determining the NOEC using a step-down procedure based on a trend test 

213. This section describes a generalised step-down procedure for determining the NOEC for a 
continuous response from a dose response study. It is appropriate whenever the treatment means are 
expected to follow a monotone dose-response and there is no problem evident in the data that precludes 
monotonicity. 

214. Preliminaries: The procedure described is suitable if the experiment being analysed is a dose 
response study with at least two dose groups (Fig. 62). For clarity, the term “dose group” includes the zero-
dose control. Before entering the step-down procedure, two preliminary actions must be taken. First, the 
data are assessed for monotonicity (as discussed in section 5.1.4). A step-down procedure based on trend 
tests is used if a monotonic response is evident. Pairwise comparisons (e.g., Dunnett’s, Tamhane-Dunnett, 
Dunn’s test or Mann-Whitney with Bonferroni-Holm correction, as appropriate) instead of a trend-based 
test should be used where there is strong evidence of departure from monotonicity. Next, examine the 
number of responses and number of ties (as discussed in section 5.3.2.1). Small samples and data sets with 
massive ties should be analysed using exact statistical methods if possible. Finally, if a parametric 
procedure (e.g. Dunnett’s or Williams’ test) is to be used, then an assessment of normality and variance 
homogeneity should be made. These are described elsewhere. 

215. The Step-Down Procedure: The preferred approach to analysing monotonic response patterns is as 
follows. Perform a test for trend (Williams or Jonckheere) on responses from all dose groups including the 
control. If the trend test is significant at the 0.05 level, omit the high dose group, and re-compute the trend 
statistic with the remaining dose groups. Continue this procedure until the trend test is first non-significant 
at the 0.05 level, then stop. The NOEC is the highest dose remaining at this stage. If this test is significant 
when only the lowest dose and control remain, then a NOEC cannot be established from the data. 

216. Williams’ test: Williams’ test is a parametric procedure that is applied in the same way the 
Jonckheere-Terpstra test is applied. This procedure, described in detail in Annex 5.3, assumes data within 
concentrations are normally distributed and homogeneous. In addition to the requirement of monotonicity 
rather than linearity in the dose-response, an appealing feature of this procedure is that maximum 
likelihood methods are used to estimate the means (as well as the variance) based on the assumed 
monotone dose-response of the population means. The resulting estimates are monotone. An advantage of 
this method is that it can also be adapted to handle both between- and within-subgroup variances. This is 
important when there is greater variability between subgroups than chance alone would indicate.  
Williams’ test must be supplemented by a non-parametric procedure to cover non-normal or heterogeneous 
cases. Either Shirley’s (1979) non-parametric version of Williams’ test or the Jonckheere-Terpstra test can 
be used, but if these alternative tests are used, one loses the ability to incorporate multiple sources of 
variances. Limited power comparisons suggest similar power characteristics for Williams’ and the 
Jonckheere-Terpstra tests. 

217. Jonckheere-Terpstra Test: The Jonckheere-Terpstra trend test is intended for use when the 
underlying response of each experimental unit is continuous and the measurement scale is at least ordinal. 
The Jonckheere-Terpstra test statistic is based on joint rankings (also known as Mann-Whitney counts) of 
observations from the experimental treatment groups. These Mann-Whitney counts are a numerical 
expression of the differences between the distributions of observations in the groups in terms of ranks. The 
Mann-Whitney counts are used to calculate a test statistic that is used in conjunction with standard 
statistical tables to determine the significance of a trend. Annex 5.3 gives details of computations. The 
Jonckheere-Terpstra test reduces to the Mann-Whitney test when only one group is being compared to the 
control.  
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218. The Jonckheere-Terpstra test has many appealing properties. Among them is the requirement of 
monotonicity rather than linearity in the dose-response. Another advantage is that an exact permutation 
version of this test is available to meet special needs (as discussed below) in standard statistical analysis 
packages, including SAS and StatXact. If subgroup means or medians are to be analysed, the Jonckheere-
Terpstra test has the disadvantage of failing to take the number of individuals in each subgroup into 
account. 

219. Extensive power simulations of the step-down application of the Jonckheere-Terpstra test 
compared to Dunnett’s test have demonstrated in almost every case considered where there is a monotone 
dose-response, that the Jonckheere-Terpstra test is more powerful than Dunnett’s test (Green, J. W., in 
preparation for publication). The only situation investigated in which Dunnett’s test is sometimes slightly 
more powerful than the Jonckheere-Terpstra is when the dose-response is everywhere flat except for a 
single shift. These simulations followed the step-down process to the NOEC determination by the rules 
given above and covered a range of dose-response shapes, thresholds, number of groups, within-group 
distributions, and sample sizes.  

5.3.1.5. Assumptions for methods for determining NOEC values  

Small Samples / Massive Ties 

220. Many standard statistical tests are based on large sample or asymptotic theory. If a design calls for 
fewer than 5 experimental units per concentration, such large sample statistical methods may not be 
appropriate. In addition, if the measurement is sufficiently crude, then a large proportion of the measured 
responses have the same value, or are very restricted in the range of values, so that tests based on a 
presumed continuous distribution may not be accurate. In these situations, an exact permutation-based 
methodology may be appropriate. While universally appropriate criteria are difficult to formulate, a simple 
rule that should flag most cases of concern is to use exact methods when any of the following conditions 
exists: (1) at least 30% of the responses have the same value; (2) at least 50% of the responses have one of 
two values; (3) at least 65% of the responses have one of three values. StatXact and SAS are readily 
available software packages that provide exact versions of many useful tests, such as the Jonckheere-
Terpstra and Mann-Whitney tests. 

Normality 

221. When parametric tests are being considered for use, then a Shapiro-Wilk test (Shapiro and Wilk 
1965) of normality should be performed. If the data are not normally distributed, then either a normalising 
transformation (section 5.1.10) should be sought or a non-parametric analysis should be done. Assessment 
of non-normality can be done at the 0.05 significance level, though a 0.01 level might be justified on the 
grounds that ANOVA is robust against mild non-normality. The data to be checked for normality are the 
residuals after differences in group means are removed; for example, from an ANOVA with concentration, 
and, where necessary, subgroup, as class (i.e., non-numeric) variables.  

Variance Homogeneity 

222. If parametric tests are being considered for use and the data are normally distributed, then a check 
of variance homogeneity should be performed. Levene’s test (Box, 1953) is reasonably robust against 
marginal violations of normality. If there are multiple subgroups within concentrations, the variances used 
in Levene's test are based on the subgroup means. If there are no subgroups the variances based on 
individual measurements within each treatment group would be used. It should be noted that ANOVA is 
robust to moderate violations of assumptions, especially if the experimental design is balanced (equal n in 
the treatment groups), and that some tests for homogeneity are less robust than the ANOVA itself. Small 
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departures from homogeneity (even though they may be statistically significant by some test) can be 
tolerated without adversely affecting the power characteristics of ANOVA based tests. For example, it is 
well known that Bartlett’s test is very sensitive to non-normality. It is customary to use a much smaller 
significance level, (e.g., 0.001) if this test is used. Levene’s test, on the other hand, is designed to test for 
the very departures from homogeneity that cause problems with ANOVA, so that a higher level 
significance (0.01 or 0.05) in conjunction with this test can be justified. Where software is available to 
carry out Levene’s test, it is recommended over Bartlett’s. 

223. For pairwise (single-step) procedures, if the data are normally distributed but heterogeneous, then a 
robust version of Dunnett’s test (called Tamhane-Dunnett in this document) is available. Such a procedure 
is discussed in Hochberg and Tamhane (1987). Alternatives include the robust pairwise tests of Welch and 
Brown-Forsythe. If the data are normally distributed and homogeneous, then Dunnett’s test is used. 
Specific assumptions and characteristics of many of the tests referenced in this section are given in Annex 
5.3. 

224. Of course, expert judgement should be used in assessing whether a significant formal test for 
normality or variance homogeneity reveals a problem that calls for alternative procedures to be used. 

5.3.1.6. Operational considerations for statistical analyses 

Treatment of Experimental Units 

225. A decision that must often be made is whether the individual animals or plants can be used as the 
experimental unit for analysis, or whether subgroups should be the experimental unit. The consequences of 
this choice should be carefully considered. If there are subgroups in each concentration, such as multiple 
tanks or beakers or pots, each with multiple specimens, then the possibility exists of within- and among-
subgroup variation, neither of which should be ignored. If subjects within subgroups are correlated, that 
does not mean that individual subject responses should not be analysed. It does mean that these 
correlations should be explicitly modelled or else analysis should be based on subgroup means. Methods 
for modelling replicated dose groups (e.g., nested ANOVA) are available. For example, Hocking (1985), 
Searle (1987, especially section 13.5), Milliken and Johnson (1984, esp. chapter 23), John (1971), Littell 
(2002) and many additional references contain treatments of this.  

226. Technical note: If both within-subgroup and between-subgroup variation exist and neither is 
negligible, then the step-down trend test should either be the Jonckheere-Terpstra test with mean or median 
subgroup response as the observation, or else an alternative trend test such as Williams’ or Brown-Forsythe 
with the variance used being the correct combination of the within- and among-subgroups variances as 
described in the discussion on the Tamhane-Dunnett test in Appendix 5.3.1.  

227. Given the possibility of varying subgroup sample sizes at the time of measurement, it may not be 
appropriate to treat all subgroup means or medians equally. For parametric comparisons, this requires only 
the use of the correct combination of variance components, again as described as Appendix 5.3.1. For non-
parametric methods, including Jonckheere’s test, there are no readily available methods for combining the 
two sources of variability. The choices are between ignoring the differences in sample sizes and ignoring 
the subgroupings. If the differences in sample sizes are relatively small, they can be ignored. If the 
differences among subgroups are relatively small, they can be ignored. If both differences are relatively 
large, then there is no universally best method. A choice can be made based on what has been observed 
historically in a given lab or for a given type of response and built into the decision tree.  
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Identification and Meaning of Outliers 

228. The data should be checked for outliers that might have undue influence on the outcome of 
statistical analyses. There are numerous outlier rules that can be used. Generally, an outlier rule such as 
Tukey’s (Tukey, 1977) that is not itself sensitive to the effects of outliers is preferable to methods based on 
standard deviations, which are quite sensitive to the effects of outliers. Tukey’s outlier rule can be used as 
a formal test with outliers being assessed from residuals (results of subtracting treatment means from 
individual values) to avoid confounding outliers and treatment effects.  

229. Any response more than 1.5 times the interquartile range above the third quartile (75th percentile) 
or below the first quartile (25th percentile) is considered an outlier by Tukey’s rule. Such outliers should be 
reported with the results of the analysis. The entire analysis of a given endpoint can be repeated with 
outliers omitted to determine whether the outliers affected the conclusion. While it is true that 
nonparametric analyses are less sensitive to outliers than parametric analyses, omission of outliers can still 
change conclusions, especially when sample sizes are small or outliers are numerous. 

230. Conclusions that can be attributed to the effect of outliers should be carefully assessed. If the 
conclusions are different in the two analyses, a final analysis using non-parametric methods may be 
appropriate, as they are less influenced than parametric methods by distributional or outlier issues.  

231. It is not appropriate to omit outliers in the final analysis unless this can be justified on biological 
grounds. The mere observation that a particular value is an outlier on statistical grounds does not mean it is 
an erroneous data point. 

Multiple Controls 

232. To avoid complex decision rules for comparing a water and solvent control, it is recommended that 
a non-parametric Mann-Whitney (or, equivalently, Wilcoxon) comparison of the two controls be 
performed, using only the control data. This comparison can be either a standard or an exact test, according 
as the preliminary test for exact methods is negative or positive. If a procedure for comparing controls 
using parametric tests were to be employed, then another layer of complexity can result, where one has to 
assess normality and variance homogeneity twice (once for controls and again later, for all groups) and one 
must also consider the possibility of using transformations in both assessments. 

General 

233. Outliers, normality, variance homogeneity and checks of monotonicity should be done only on the 
full data set, not repeated at each stage of the step-down trend test, if used. Diagnostic tools for 
determining influential observations can also be very helpful in evaluating the sensitivity of an analysis to 
the effects of a few unusual observations. 

5.3.2. Statistical Items to be Included in the Study Report.  

234. The report describing continuous study results and the outcome of the NOEC determination should 
contain the following items: 

• Description of the statistical methods used 

• Test endpoint assessed 

• Number of Test Groups 

• Number of subgroups within each group and how handled (if applicable) 
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• Identification of the experimental unit 

• Nominal and measured concentrations (if available) for each test group  

• The dose metric used. 

• Number exposed in each treatment group (or subgroup if appropriate) 

• Group means (and median, if a non-parametric test was used) and standard deviations 

• Confidence interval for the percent effect at the NOEC, provided that the basis for the calculation 
is consistent with the distribution of observed responses. (See Annex 5.3). 

• The NOEC 

• P value at the LOEC (if applicable) 

• Results of power analysis 

• Plot of response versus concentration 

6. DOSE-RESPONSE MODELLING  

6.1. Introduction 

235. The main regulatory use of dose-response modeling in toxicity studies is to estimate an ECx, the 
exposure concentration that causes an x% effect in the biological response variable of interest, and its 
associated confidence bounds. The value of x, the percent effect, may be specified in advance, based on 
biological (or regulatory) considerations. Guidelines may specify for which value(s) of x the ECx is 
required. This chapter discusses how an ECx may be estimated, as well as how it may be judged that the 
available data are sufficient to do so.   

236. Dose-response (or concentration-response) modelling aims at describing the dose-response data as 
a whole, by means of a dose-response model. In general terms, it is assumed that the response, y, can be 
described as a function of concentration (or dose), x : 

y  =   f(x) 

where f can be any function that is potentially suitable for describing a particular dataset. Since y is 
considered as a function of x, the response variable y is also called the dependent variable, and the 
concentration x, the independent variable. As an example, consider the linear function 

 y  = a +  b x  

where the response changes linearly with the concentration. Here, a and b are called the model parameters. 
By changing parameter a one may shift the line upwards or downwards, while by changing the parameter b 
one may rotate the line. Fitting a line to a dataset is the process of finding those values of a and b that result 
in “the best fit”, i.e., making the distances of the data points to the line as small as possible. Similarly, for 
any other dose-response model, or function f, the best fit may be achieved by adjusting the model 
parameters.  
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